

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

May 2012
2. REPORT TYPE

Conference Paper (Post Print)
3. DATES COVERED (From - To)

FEB 2010 – SEP 2010
4. TITLE AND SUBTITLE

AUTOMATIC METHODS FOR CONTINUOUS STATE
SPACE ABSTRACTION

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Robert Wright, Steven Loscalzo

5d. PROJECT NUMBER
S2TS

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
ML

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RISC
525 Brooks Rd
Rome NY 13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2012-012

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 88ABW-2010-1438
DATE CLEARED:
13. SUPPLEMENTARY NOTES
Paper presented at the AAAI Publications, Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence,
July 10-11, 2010; pg 48-53. This is a work of the United States Government and is not subject to copyright protection in
the United States.
14. ABSTRACT
Reinforcement learning algorithms are often tasked with learning an optimal control policy in a continuous state space. Since it is
infeasible to learn the optimal action to take for every possible observation in a continuous state space, useful abstractions of the
space must be constructed and subsequently learned on. Abstraction techniques that generalize the space into very few abstract states
must take care to avoid creating an abstraction that prevents learning the optimal policy. Many commonly used abstractions, such as
CMAC can take considerable effort to tune to ensure a learnable abstraction is created. In this work we propose three methods that
derive state abstractions automatically, in part by making use of the dimensionality reduction capability of the RL-SANE algorithm.
We show that abstractions derived from these automatic methods can allow a learning algorithm to converge to the optimal policy
faster than with a fixed abstraction. Additionally, these techniques are able to break the space into very few abstract states, further
facilitating rapid learning.
15. SUBJECT TERMS
Reinforcement learning (RL), optimal control policy, state abstraction

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

7

19a. NAME OF RESPONSIBLE PERSON
ALEX F. SISTI

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Automatic Methods for Continuous State Space Abstraction

Steven Loscalzo and Robert Wright
Air Force Research Laboratory

525 Brooks Road
Rome NY

Abstract

Reinforcement learning algorithms are often tasked with
learning an optimal control policy in a continuous state space.
Since it is infeasible to learn the optimal action to take for
every possible observation in a continuous state space, use-
ful abstractions of the space must be constructed and subse-
quently learned on. Abstraction techniques that generalize
the space into very few abstract states must take care to avoid
creating an abstraction that prevents learning the optimal pol-
icy. Many commonly used abstractions, such as CMAC can
take considerable effort to tune to ensure a learnable abstrac-
tion is created. In this work we propose three methods that
derive state abstractionsautomatically, in part by making use
of the dimensionality reduction capability of the RL-SANE
algorithm. We show that abstractions derived from these au-
tomatic methods can allow a learning algorithm to converge
to the optimal policy faster than with a fixed abstraction. Ad-
ditionally, these techniques are able to break the space into
very few abstract states, further facilitating rapid learning.

Introduction
Given a Markov Decision Problem (MDP) defined over a
set of statesS and actionsA, reinforcement learning (RL)
algorithms seek to learn an optimal policyπ∗ which selects
the appropriate actiona ∈ A for each states ∈ S to reach
some specified goal state. Typical reinforcement algorithms
learn π∗ by repeatedly experiencing states leading to the
goal state a number of times. In domains with a continuous
set of states, the probability of repeatedly visitinganystate
approaches zero, preventing the learner from converging to
π∗ . State space aggregation or abstraction techniques must
then be introduced to allow learning of an optimal policy by
turning the continuous spaceS into a discrete spaceS′.

State space abstraction techniques can be classified into
five categories depending on the “coarseness” of the abstrac-
tion and what components ofπ∗ in original state space are
to be preserved in the abstraction (Li, Walsh, and Littman
2006). In that work, Li et al. proved that the optimal policy
learned on several of the categories of abstractions (model-
irrelevance,Qπ-irrelevance, andQ∗-irrelevance) resulted in
an optimal policy in the original space. However, the two
abstraction categories that produce the sharpest reduction in

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the size of the state space are not guaranteed to learn a policy
that will converge to the optimal solution. This makes ap-
plying these powerful abstraction techniques (a∗-irrelevance
andπ∗-irrelevance) dangerous in general as they might pre-
vent the learner from arriving at the optimal policy.

One of these classes of abstractions, thea∗-irrelevance
abstraction, which group two base states together if they
share the same optimal action is of particular interest. One
of the most popular types of abstraction techniques, tiling,
falls into this category. Examples of common tile based
abstractions include CMAC (Sutton 1996), and U-tile dis-
tinction (Mccallum 1996; Uther and Veloso 1998). While
tile based methods have been shown effective in a number
of situations, there are serious drawbacks to using them ef-
fectively. Engineering a tiling is typically done by hand,
and it can be very difficult to find an appropriate tiling for
a given problem or to correctly set the parameters in meth-
ods that build a tiling during the learning process. It has
also been shown that tiling techniques cannot solve some
standard benchmark problems (Gomez, Schmidhuber, and
Miikkulainen 2006).

Here we propose and evaluate threeautomatic tiling
methods that efficiently learn how to abstract a space but still
allow a learner to converge to the optimal policy. These ab-
stractions are applied to the one dimensional state space pro-
duced by RL-SANE algorithm (Wright and Gemelli 2009)
which allows us to focus on the methods without dealing
with the dimensionality of the original state space. Each
of these methods allows the abstract states that are used by
the learner to be redrawn in an effort to get the states that
share the same optimal action to fall into the same tile, and
improve the speed of the learning. It is thought that once
good automatically tiling routines are identified in this learn-
ing process, they can be used to abstract higher dimensional
state spaces, cutting out the need for a dimensionality reduc-
tion technique.

We show via empirical study on two well-known RL
benchmark problems that each of the three automatic tiling
methods proposed here allow the learning algorithm to sig-
nificantly improve its rate of convergence when compared to
the base RL-SANE algorithm using a fixed tiling. Addition-
ally, we show that the automatic methods we propose here
result in very few abstract states (tiles) being used in order
to learn the test problems.

1

S

bs

x

y

Perception X

P
e

rc
e

p
tio

n
Y

sx,y

Artificial Neural Network

x

y

z

S′

s′1

s′
2

s′3

s′
4

s′5

bz

0.0

1.0

Figure 1: Overview of the RL-SANE algorithm transforming a ground statesx,y in a sample two dimensional state spaceS to
the abstract states′

2
in the one dimensional abstract state spaceS′.

The rest of this paper is organized as follows: the next sec-
tion describes related tile encoding methods and give back-
ground on the RL-SANE algorithm. The three abstraction
techniques are described in depth in the Automatic Methods
section. The methods are then applied to the two problems
given in the Experimental Setup section, and the results of
this study is given the Experimental Results section. Finally,
the paper concludes with a summary of our contributions
and possible future directions.

Background and Related Work
Here we give some necessary background on various tile en-
coding methods that have appeared in the literature, as our
methods can be interpreted as tile encodings as well. We
also provide details on the RL-SANE algorithm, the plat-
form we use to reduce the dimensionality of the given learn-
ing problems and on which we examine our proposed meth-
ods.

Tile Encoding
Many tile encoding methods exist in the literature, and sev-
eral popular mechanisms are variations on the Cerebellar
Model Articulation Controller (CMAC) algorithm (Miller,
Glanz, and Kraft 1990) which generalizes the learning of
one state to a set of nearby states and based on how the hu-
man brain is thought to respond to stimuli (Albus 1971).

In tile encoding methods, the state space can be thought
of as being broken apart into a number of tiles, and every
time one state is observed, all the other states that belong to
the same tile (or tiles, in the common event of overlapping
layers of tiles) also experience the learning rewards. The
size of the tiles controls the resolution of the abstraction,
smaller tiles result in a finer resolution, but cause more states
to be learned before the RL can findπ∗. The location in the
state space where the boundaries occur in the tiling can have
a great impact on the ability of an algorithm to learnπ∗. For
example, if in order to solve a problem, actiona1 must be
taken from states1 anda2 must be taken froms2 then if s1

ands2 fall on the same tile (same abstract state), since only
one action can be taken from the abstract state, the optimal
policy will be impossible to learn.

A fundamentally different approach to the tile encoding
problem is taken in (Mccallum 1996) with the U Tree algo-
rithm and later extensions to this work (Uther and Veloso
1998) to have it work in continuous domains. Here, the

coarseness of the abstraction is not fixeda priori by setting
a tiling, but rather, the space is viewed as a single tile and
then repeatedly split in areas where it is determined a finer
abstraction is needed. The algorithm decides to spilt a tile in
two when each of the subtiles show a different distribution
of observations than the whole tile, indicating that more in-
formation about the problem can be gained by splitting the
tile. These approaches allow for automatic construction of
a state space abstraction, however, they still suffer from a
fundamentally arbitrary splitting mechanism.

When the U Tree algorithm finds that more resolution can
differentiate observations in one area of the state space, the
algorithm simply splits the tile in two at the center of the
tile. Splitting a tile into two halves will lead to problems
when the section of the state space that needs more resolu-
tion is towards the center of a tile, as many splits will need
to take place before this area achieves the necessary resolu-
tion. This causes the abstraction to include and subsequently
to learn many unnecessary tiles which hinders the power of
the reduction. In contrast, the methods we propose allow the
split locations to be positioned according to the needs of the
problem and not in a pre-specified location, nor deduced by
a human prior to applying a learning algorithm.

RL-SANE
The RL-SANE algorithm is a powerful reinforcement learn-
ing and state abstraction algorithm (Wright and Gemelli
2009). It combines a neuroevolution approach to construct-
ing neural networks (Stanley and Miikkulainen 2002) with a
fixed tiling over a one dimensional abstract state space to al-
low a learner to efficiently learn complex problems by learn-
ing the optimal action for each tile in this abstract space. An
overview of this process is given in Figure 1.

For any dimensionality of input spaceS the artificial neu-
ral network layer of RL-SANE takes the input measured
acrossm dimensions and reduces it to a single output value
z ∈ [0, 1] corresponding to a single abstract states′ ∈ S′.
This one dimensional output space can still represent in-
finitely many states, so a tiling is applied to it. The fixed
tiling simply splitsS′ into a number of equal sized tiles with
no consideration given to the exact position of where each
split occurs, meaning that the same problem that occurs with
the fixed tiling methods can occur here as well.

The difference between a true tile encoding technique and
the RL-SANE algorithm is the fact that if a given abstrac-

2

tion does not allowπ∗ to be found, the ANN can mutate
via neuroevolution and cause a different distribution of out-
puts which may better suit the tiling and allow learning to
continue. The original RL-SANE algorithm included a user
specified parameterβ to determine the number of tiles to lay
overS′. Evidence displayed in (Wright and Gemelli 2009)
shows that the algorithm’s overall convergence is not very
sensitive toβ however, the rate of learning can be signifi-
cantly impacted by a poor selection.

Automatic Methods

In this work we focus on three different types of automatic
methods that are able to redraw the abstraction boundaries
of S′ online as the learner embedded in the RL-SANE al-
gorithm is learning. Here we describe mutation, maximum
density separation, and temporal relative extrema methods
for automatic state abstraction.

Mutation

The mutation method of automatic state bound construction
makes direct use of the neuroevolution process that is at the
heart of the RL-SANE algorithm, and is the closest method
to the fixed tiling out of the three. As mentioned above,
the basic RL-SANE algorithm takes the number of abstract
states to generalize to,β, as a parameter. The mutation
method encodesβ as another gene in the chromosome and
allows it to be mutated during the evolution of each neural
network. This allows the evolutionary process to automat-
ically explore different state abstraction possibilities in an
effort to find a new one that better groups similar states to-
gether based on the output of the neural network.

In this work, we experimented with two variations of this
idea, the first allows the number of abstract states to increase
or decrease by one per mutation, and the second allows the
number of states to change by a random amount up to a user
defined threshold in a single mutation. Whenever a muta-
tion to the state bound occurs, the method redistributes the
previously learnedQ-values for each action in each abstract
state into the new abstract states in proportion to the over-
lap between the old and new states. For example, if there
are half as many new states as old ones, then each new state
gets initialQ-values that are the averages from the two old
states that the new one overlaps. This enables the learner
to reuse values that it had previously learned while allowing
more refined abstractions to come into existence and drive
the learner to a better solution.

This method directly improves the situation of estimating
the proper fixed number of states, achieving our goal of au-
tomatic state abstraction, however, there are still some draw-
backs that need to be addressed. While the boundaries are
redrawn according to the chance of a mutation to the neural
network, they are still arbitrarily placed over the space, that
is, each state in the abstraction all cover the same portion of
the space, and there is no intuition that implies that this is a
good strategy in general. We would rather have the smaller
states be introduced where finer resolution is needed, and
broader states where a coarse abstraction would do.

Algorithm 1 MDS (Maximum Density Separation)
required: number of bins for frequency distribution
output: new abstract state mapping
≪embedded within a reinforcement learning algorithm≫
get next states′ by following π

∗ from states
if s

′ != fail state
s := s

′

increment frequency distribution (s)
else if s

′ == fail state
locate relative extrema in frequency distribution
erase old partitions ofS ′

partitionS ′ in the center of two relative maximums
if a relative minimum occurred between them

end else if

Maximum Density Separation

The maximum density separation (MDS) approach takes a
different tact in determining the tiling to be used. Unlike
the mutation method, MDS can place the boundaries of a
split anywhere in the state space and can add or remove as
many abstract states at a time as the algorithm determines
necessary. This method intuitively views dense clusters of
observations as belonging to a single state, and abstracts the
state space so that these dense clusters are located on sep-
arate tiles from one another. The split between tiles occurs
at the farthest point between two dense regions of observa-
tions. This approach is principled by the idea that nearby
states will prefer the same action, however the size of each
these groups may vary so we must use an adaptable parti-
tioning solution.

An overview of the Maximum Density Separation method
is given in Algorithm 1. For a single run of the prob-
lem in a given RL algorithm, this method records the fre-
quency of observations across the state space until a failure
or the goal state is reached. On a failure, the constructed
frequency distribution is searched for relative extrema, us-
ing a soft-thresholding approach to prevent small fluctua-
tions in the distribution from leading to many spurious ex-
trema. Once the relative extrema have been identified, a par-
tition is placed in the space in the center of every two rela-
tive maximums, as long as a relative minimum occurred be-
tween them. The splits between abstract states are made in
this fashion in accordance with the maximum margin princi-
ple (Mitchell 1997), which seeks to minimize the structural
variance in a hypothesis. Positioning the splits as far as pos-
sible from the dense regions of observations minimizes the
risk that in the next run of the problem new observations be-
longing to one dense region will spill into an adjacent state
and mislead the learning there.This process is linear in the
number of bins used to measure the frequency distribution,
and in practice had only a negligible impact on the running
time of each generation of the algorithm, and so is a feasible
abstraction algorithm in terms of time complexity. After the
new state abstraction has been set, theQ-values that were
learned on the earlier state abstraction are transferred to the
new abstraction in the same manner as described in the mu-
tation method.

This method effectively overcomes two of the perceived

3

limitations of the mutation method, abstract state partitions
can be placed anywhere in the space and the number of states
in the space does not directly depend on the previous num-
ber. The MDS method does introduce some other limita-
tions, however. It could be the case that an area of dense ob-
servations is not really homogenous in terms of preferred ac-
tion, but were coincidentally grouped together by the ANN.
In this case, the abstract states might still become successful
if the ANN adapts and separates these states into two differ-
ent clusters in a later evolutionary stage. Another limitation
of MDS is that it has no notion of the series of observations
that led to the failure, and they may easily be grouped with
other observations with similar values but should be sepa-
rated and allowed to pursue other actions as soon as possi-
ble. The MDS method makes no provision for this possibil-
ity and relies on the ANN to separate out the other states in
a later generation. The next method addresses these short-
comings.

Temporal Relative Extrema
As the name implies, the Temporal Relative Extrema (TRE)
method creates an abstraction by incorporating the order in
which observations are generated and not just their values
as in the MDS method. Like the MDS, TRE is capable of
partitioningS′ into as many abstract states as necessary, and
can place partitions between states anywhere in the space.
During preliminary studies, we noticed that the observations
in S′ frequently followed a periodic function, much like a
sine curve, if states were viewed in the order they were ob-
served. The TRE approach was created to encourage more
exploration in the learner and break away from the periodic
repetition of known states to get the learner to visit new and
possibly more beneficial states.

The TRE method is summarized in Algorithm 2. All of
the observations are recorded for a single run of the problem
until a failure is encountered. At this point, the algorithm
iterates through each stored observation and identifies rela-
tive maxima and minima as those places are associated with
restarting the next period of observations. Each relative ex-
trema is compared to the rest and if they are within a user
defined thresholdt away from each other then they are con-
sidered to be the same extrema and are merged together. For
minima, the greatest (innermost) observation is stored after
the merge, and for maxima, the smallest (again innermost)
observation is stored. The state spaceS′ is then partitioned
at each of the final extrema locations and becomes the new
abstraction for the next generation. The initialQ-values of
the new abstraction are taken from the previous abstraction
in the same manner as the mutation and MDS methods. The
time complexity of the TRE method is linear in the num-
ber of observations for each run of the problem, and since
the observations must be generated anyway, there is no no-
ticeable effect on the overall running time of the learning
algorithm.

The heuristic of partitioning the state space based on
where the learner begins to repeat observations for the same
problem is quite distinct from the previous approaches men-
tioned here. In effect, this groups the heavily repeated ob-
servations into the same abstract state while allowing for the

Algorithm 2 TRE (Temporal Relative Extrema)
required: similarity thresholdt for comparing extrema
output: new abstract state mapping
≪embedded within a reinforcement learning algorithm≫
get next states′ by following π

∗ from states
if s

′ != fail state
s := s

′

records

else if s
′ == fail state

for each relative extrema
merge extrema if closer thant from an existing extrema
otherwise store the extrema

end for each
erase old partitions ofS ′

partitionS ′ on the inside each stored extrema
end else if

relative extrema to more easily find their own preferred ac-
tions which can lead to an improved learning rate. If the
extrema prefer the same action as the other heavily repeated
observations then there is not much harm done by separat-
ing them, as their initialQ-values will be shared according
to the previous abstraction anyway and should not hurt the
overall learning rate. The similarity parametert does not
need to be significantly tuned, it suffices to set it small com-
pared to the range of possible values for an observation. If
t is very small (s.t.|zi − zj | > t for nearly all observations
zi, zj ∈ S′ near relative extrema, withi 6= j), many abstract
states will be created near the extrema, but this has little real
impact on the learning since they will generally share the
sameQ-values over successive generations.

Experimental Setup
Here we compare the performance of the automatic state
abstraction techniques proposed above, namely small mu-
tation, large mutation, MDS, and TRE. In addition to mea-
suring the techniques against one another, we also compare
them to the base RL-SANE algorithm with a fixed abstrac-
tion over the input space, which has been shown to be a very
capable learner (Wright and Gemelli 2009). The compari-
son examines the rates of convergence of each of the meth-
ods as well as the number of states that are used in their final
abstractions on two benchmark RL problems, the mountain
car and double pole balance. It is thought that the automatic
abstractions will enable a faster convergence to the optimal
policy by selecting a reasonable number of abstract states to
learn on.

The mountain car problem (Boyan and Moore 1995) con-
sists of a car trying to escape a valley. The car’s engine is
too weak to provide enough power to simply drive over the
hill in front of it, and instead must build up momentum by
driving partially up the hill behind it before moving forward
towards the goal, perhaps repeating the back-and-forth mo-
tion several times before building up the requisite power.

This problem is described by two perceptions: the posi-
tions of the car, and the velocity of the car. Time is dis-
cretized into small intervals and the learner can choose one
of two actions in each time step: drive forward or backward.
The only reward that is assigned is -1 for each each action

4

0

50

100

150

200

0 10 20 30 40 50

F
it

n
e
s
s

Generations

Mountain Car
Average Fitness

MDS
TRE

Large Mutation
Small Mutation

Fixed

0

20000

40000

60000

80000

100000

0 50 100 150 200

F
it

n
e
s
s

Generations

Double Pole Balance
Average Fitness

MDS
TRE

Large Mutation
Small Mutation

Fixed

Figure 2: The performance of the four automatic abstraction methods and the Fixed abstraction on the Mountain Car and
Double Pole Balance problems.

that is taken before the car reaches the goal of escaping the
valley. Since RL algorithms seek to maximize the reward
the optimal policy is the one that enables the car to escape
the valley as quickly as possible.

The double inverted pole balancing problem (Gomez and
Miikkulainen 1999) is a very difficult RL benchmark prob-
lem. In this problem, the learner must balance two poles
of different length and mass which are attached to a moving
cart. The problem is further complicated by maintaining that
the cart must stay within a certain small stretch of track. If
the learner is able to prevent the poles from falling over af-
ter a specified amount of time then the problem is considered
solved.

This is a higher dimensional problem than the mountain
car problem, with six perceptions being given to the learner:
the position of the cart, the velocity of the cart, the angle
each beam makes with the cart, and the angular velocities of
the beams. Once again, time is discretized into small inter-
vals, and during any such interval the learner can choose to
push the cart to the left or right or to leave it alone. In our
experiment, the learner achieves a +1 reward for every time
step before the poles fell over, with the goal set to balancing
the poles for 100000 time steps.

Each of the mountain car results shown are the average
values from a problem set of 25 preset initial start states,
and for the double pole balance each result shows the aver-
age value of 20 random initial start states. It should be noted
that the mutation methods and the fixed RL-SANE all have
a significant dependency on the initial number of abstract
states, while the MDS and TRE methods do not. To account
for this in the presented results the mutation methods and
fixed RL-SANE values are the averages of each of the prob-
lem sets starting with10, 20, . . . , 100 initial abstract states;
in other words, the average of 250 problem runs for moun-
tain car and 200 runs for double pole balance. For the RL-
SANE algorithm, these initial states did not change for the
duration of the learning process, while the mutation methods
are free alter them over time. Prior experiments have shown

that the fixed RL-SANE algorithm achieves the best learning
rate with 50 abstract states in mountain car and 10 in double
pole balance, both of which are included in the abstract state
ranges that were tested on.

The RL-SANE algorithm was set to use a pool of 100
neural networks per generation, with a maximum of 200
generations of learning. We used the Sarsa(λ) learning al-
gorithm with all learning and neuroevolution parameters set
as in (Wright and Gemelli 2009). We allowed the large mu-
tation method to alter the number of states by up to 5 per
generation. For MDS the density of the observations in the
state space was estimated using 1000 evenly spaced areas
to collect observations. The exact value of this parameter is
unimportant as long as it is significantly larger than the num-
ber of expected abstracted states in the solution. TRE con-
sidered two extrema in the its results different if they were
at least 0.1 apart (i.e.t = 0.1).

Experimental Results
Figure 2 shows the average fitness over each of the problem
sets for the mountain car and double pole balance domains.
The mountain car problem shows all five methods perform-
ing very similarly and all rapidly converging to a policy that
takes on average approximately 50 time steps to navigate the
car from the valley. Both of the more sophisticated meth-
ods, MDS and TRE, lag behind the top performers some-
what, which indicates that this problem can be easily learned
without complicated abstract state repartitioning. These re-
sults do serve to show that using automatically repartitioning
of the abstract state space does not hurt the overall conver-
gence of the learner on simple reinforcement learning prob-
lems even when the problem is simple enough that a fixed
abstraction is sufficient.

Examining the fitness curves of the double pole balance
problem shows several trends. The most obvious conclusion
that can be drawn is that the automatic methods are all able
to converge towards the optimal policy at a greater rate than
the fixed RL-SANE algorithm. If the number of abstract

5

Mountain Car Double Pole Balance
MDS 3.36± 1.25 13.5± 5.93
TRE 63.64± 23.57 58.13± 13.48
Large 14.77± 8.6 24.51± 15.59
Small 14.82± 8.7 24.48± 15.43
Fixed 50 10

Table 1: Average number of final abstract states± stdev and
optimal number of states for the fixed abstraction.

states are tuned, the fixed RL-SANE method can find the
optimal policy at a similar rate as the other algorithms, how-
ever, if a range of possible good parameters are used instead
the algorithm does not do nearly as well. On the contrary,
the mutation methods, both small and large, are able to over-
come the arbitrary initial parameters and efficiently reparti-
tion the abstract state space to allow the learner to quickly
converge to the optimal policy. The MDS and TRE methods
started out near the fixed method but rapidly improved to the
mutation methods. Towards the end of the reported genera-
tions the MDS method shows the best performance overall,
validating the idea that allowing a more specialized partition
of the state space can lead to improved convergence prop-
erties of the learner. TRE proves to be an able abstraction
method as well, and the performance of that algorithm is
noteworthy early on in the learning process. We can see that
it experience an almost immediate jump in fitness, which
may be due to its heuristic which favors separating those
observations which may be able to reach previously unex-
plored areas of the state space if they are able to follow ac-
tions that are not preferred by other nearby observations.

Table 1 contains the average final number of abstract
states for each automatic abstraction method as well as op-
timal number of states for the fixed tiling. We can immedi-
ately see that the optimal number of states for the fixed RL-
SANE algorithm is not the number of states that each of the
automatic methods tend to; only TRE on mountain car and
MDS on double pole balance are similar. TRE tends to break
up the space into many more states than the other methods,
while MDS leads the abstraction towards fewer states. This
implies that there are relatively few clusters of observations
in the abstract space, but there are many repetitive substruc-
tures in these clusters when the order of observations are
considered. Both of the mutation methods converge to sim-
ilar low numbers of states in the final abstractions, which
explains why their fitness measures in Figure 2 are also very
similar.

Conclusions and Future Directions
We have presented three types of automatic state abstraction
techniques, mutation methods that make use of ANNs to ab-
stract the space, Maximum Distance Separation which seeks
to partition a space based on dense regions of observations,
and Temporal Relative Extrema which builds abstract states
by separating observations that lead to previously seen areas
of the state space. Each of these methods has been shown to
improve the learning rate as compared to using a fixed ab-

straction, and they make use of only a small number of states
while doing so.

One future direction of this work is to experiment with the
techniques on higher dimensional state spaces, instead of re-
stricting them to the one dimensional abstract space at work
in the RL-SANE algorithm. Another interesting possibility
is to relax the current abstraction conceptualization and not
require that a partition of the space be determined; instead
only focus on those areas that need increased resolution.

References
Albus, J. S. 1971. A theory of cerebellar functions.Math-
ematical Biosciences10:25–61.
Boyan, J. A., and Moore, A. W. 1995. Generalization
in reinforcement learning: Safely approximating the value
function. In Advances in Neural Information Processing
Systems 7, 369–376. MIT Press.
Gomez, F. J., and Miikkulainen, R. 1999. Solving non-
markovian control tasks with neuroevolution. InIn Pro-
ceedings of the 16th International Joint Conference on Ar-
tificial Intelligence, 1356–1361. Morgan Kaufmann.
Gomez, F.; Schmidhuber, J.; and Miikkulainen, R. 2006.
Efficient non-linear control through neuroevolution. In
Proceedings of the European Conference on Machine
Learning, 654–662.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. InProceedings
of the Ninth International Symposium on Artificial Intelli-
gence and Mathematics, 531–539.
Mccallum, A. K. 1996.Reinforcement learning with selec-
tive perception and hidden state. Ph.D. Dissertation, The
University of Rochester. Supervisor-Ballard, Dana.
Miller, W.T., I.; Glanz, F.; and Kraft, L.G., I. 1990. Cmas:
an associative neural network alternative to backpropaga-
tion. Proceedings of the IEEE78(10):1561 –1567.
Mitchell, T. 1997.Machine Learning. McGraw Hill.
Stanley, K. O., and Miikkulainen, R. 2002. Efficient
reinforcement learning through evolving neural network
topologies. InGECCO ’02: Proceedings of the Genetic
and Evolutionary Computation Conference, 569–577.
Sutton, R. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Advances in Neural Information Processing Systems, vol-
ume 8, 1038–1044. MIT Press.
Uther, W. T. B., and Veloso, M. M. 1998. Tree based dis-
cretization for continuous state space reinforcement learn-
ing. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, 769–774. Menlo
Park, CA, USA: American Association for Artificial Intel-
ligence.
Wright, R., and Gemelli, N. 2009. State aggregation for
reinforcement learning using neuroevolution. InICAART
2009 - Proceedings of the International Conference on
Agents and Artificial Intelligence, 45–52.

6

